Purification and protective efficacy of monomeric and modified Yersinia pestis capsular F1-V antigen fusion proteins for vaccination against plague.

نویسندگان

  • Jeremy L Goodin
  • David F Nellis
  • Bradford S Powell
  • Vinay V Vyas
  • Jeffrey T Enama
  • Lena C Wang
  • Patrick K Clark
  • Steven L Giardina
  • Jeffery J Adamovicz
  • Dennis F Michiel
چکیده

The F1-V vaccine antigen, protective against Yersinia pestis, exhibits a strong tendency to multimerize that affects larger-scale manufacture and characterization. In this work, the sole F1-V cysteine was replaced with serine by site-directed mutagenesis for characterization of F1-V non-covalent multimer interactions and protective potency without participation by disulfide-linkages. F1-V and F1-V(C424S) proteins were overexpressed in Escherichia coli, recovered using mechanical lysis/pH-modulation and purified from urea-solubilized soft inclusion bodies, using successive ion-exchange, ceramic hydroxyapatite, and size-exclusion chromatography. This purification method resulted in up to 2mg/g of cell paste of 95% pure, mono-disperse protein having < or =0.5 endotoxin units per mg by a kinetic chromogenic limulus amoebocyte lysate reactivity assay. Both F1-V and F1-V(C424S) were monomeric at pH 10.0 and progressively self-associated as pH conditions decreased to pH 6.0. Solution additives were screened for their ability to inhibit F1-V self-association at pH 6.5. An L-arginine buffer provided the greatest stabilizing effect. Conversion to >500-kDa multimers occurred between pH 6.0 and 5.0. Conditions for efficient F1-V adsorption to the cGMP-compatible alhydrogel adjuvant were optimized. Side-by-side evaluation for protective potency against subcutaneous plague infection in mice was conducted for F1-V(C424S) monomer; cysteine-capped F1-V monomer; cysteine-capped F1-V multimer; and a F1-V standard reported previously. After a two-dose vaccination with 2 x 20 microg of F1-V, respectively, 100%, 80%, 80%, and 70% of injected mice survived a subcutaneous lethal plague challenge with 10(8) LD(50)Y. pestis CO92. Thus, vaccination with F1-V monomer and multimeric forms resulted in significant, and essentially equivalent, protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague.

Previous studies have shown that mucosal application of interleukin-12 (IL-12) can stimulate elevated secretory immunoglobulin A (IgA) responses. Since possible exposure to plague is via Yersinia pestis-laden aerosols that results in pneumonic plague, arming both the mucosal and systemic immune systems may offer an added benefit for protective immunity. Two bicistronic plasmids were constructed...

متن کامل

Development of in vitro correlate assays of immunity to infection with Yersinia pestis.

Pneumonic plague is a severe, rapidly progressing disease for which there is no effective vaccine. Since the efficacy of new vaccines cannot be tested in humans, it is essential to develop in vitro surrogate assays that are valid predictors of immunity. The F1 capsule antigen stimulates a protective immune response to most strains of Yersinia pestis. However, strains of Y. pestis that are F1- b...

متن کامل

Yersinia pestis IS1541 transposition provides for escape from plague immunity.

Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations tha...

متن کامل

Molecualr Cloning of the capsular antigen F1 of Yersinia pestis in pBAD/gIII plasmid

Yersinia pestis which is the causative agent of pneumonic plague and distributed in all continents has led to many deaths during the history. Because of its high mortality rate, it must be diagnosed and treated at the earliest time post infection and therefore, rapid diagnostic tests are required. In the present study, we cloned the coding sequence of F1 capsular antigen of the bacteria in the ...

متن کامل

Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein expression and purification

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2007